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ABSTRACT

This paper implements and utilizes recent results for controlling humanoid robots
using a structured motion representation learned through Fourier Latent Dynamics
(FLD) Li et al. (2024) and a policy model trained with Proximal Policy Optimiza-
tion (PPO). The experimented method addresses the limitation of pure Reinforce-
ment Learning (RL) methods in controlling humanoid robots and leverages the
benefits of learning a structured motion representation for improved performance.
The pipeline includes motion retargeting from human motion clips using inverse
kinematic technologies and training on multiple types of humanoid robots, includ-
ing MIT humanoid Chignoli et al. (2021) and Unitree H1. The paper also presents
an ablation study on the effectiveness of motion retargeting and compares the per-
formance of the policy model on different types of humanoid robots. The results
show that the proposed method achieves improved performance and demonstrates
the contributions of the paper to the field of humanoid robotics automation.

1 INTRODUCTION

Humanoid robots with the ability to operate autonomously in various environments have the po-
tential to alleviate labor shortages in factories, assist the elderly at home, and explore new planets.
However, traditional controllers for humanoid robots have limitations in terms of generalization and
adaptability to new environments. To address these challenges, two main approaches have been
developed for obtaining robotic motion models: reinforcement learning (RL)-based methods and
learning-based methods.

Reinforcement learning-based approaches involve training robots through trial and error, where they
learn to perform tasks by receiving feedback from their actions in the form of rewards or penalties.
These methods are particularly advantageous in dynamic and unpredictable environments, as they
enable robots to learn complex behaviors autonomously without explicit programming. RL-based
models can achieve high levels of performance and adaptability, as they continuously improve their
policies based on interactions with the environment. However, these methods often require sub-
stantial computational resources and extensive training times to converge to an optimal policy. Ad-
ditionally, the learned behaviors might be sensitive to the specific training conditions, leading to
challenges in generalizing to new and unseen scenarios.

On the other hand, learning-based methods, which include supervised and unsupervised learning
techniques, involve training robots using pre-collected datasets. These methods can leverage large
amounts of labeled data to learn accurate motion models, often resulting in faster training times
compared to RL-based methods. Learning-based approaches can provide robust solutions for spe-
cific tasks with high precision. However, they might lack the flexibility to adapt to new environments
without retraining, as they rely heavily on the quality and diversity of the training data.

In this paper, we focus on the arising trend of hybrid approaches. Policy controlling over Fourier
Latent Dynamics (FLD) Li et al. (2024), for example, is one of the hybrid approaches that produce
high-quality results. Hybrid approaches similar to FLD typically consist of two stages: a latent
space dynamic feature learning stage, followed by a RL-based stage to manipulate the robotics. The
ability of this type of models relies heavily on the structure of the latent motion space. FLD Li et al.
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(2024), for example, makes certain assumptions on the motion sequence to ensure the learnability of
Fourier latent. In this paper, we focus on easing such limitations on the motion sequence, and hence
enable the pipeline to receive a wider range of motion training data.

In conclusion, our contributions can be summarized as:

• We implement and utilize the FLD Li et al. (2024) pipeline to learn a structured motion rep-
resentation, which benefits the policy model to control the motion of humanoid robots. We
ultimately manage to control full-body motion for several types of humanoids (including
MIT humanoid Chignoli et al. (2021) and Unitree H1) in IsaacGym simulation environ-
ment.

• We further make some refinement on the existing FLD Li et al. (2024) pipeline, resolving
some limitation on the training motion sequence.

• We implement a motion retargeting pipeline that retargets motion data in joint space from
human motion clips released by DeepMimic Peng et al. (2018). This pipeline helps to
collect the necessary training data for FLD Li et al. (2024) representation.

2 METHOD

In this section, we will first go through the basic approach of FLD Li et al. (2024), which is then
followed by our refinement on the input motion sequence.

2.1 PRELIMINARIES

FLD Li et al. (2024) is inspired by and largely based on PAE Starke et al. (2022). To begin, we
introduce the necessary notations used by both PAE and FLD. PAE tackles the challenges associated
with learning the structure of the motion space—such as data sparsity and the highly nonlinear nature
of the space—by focusing on the periodicity of motions in the frequency domain. The structure of
PAE is illustrated in Fig. 1(a).

We denote trajectory segments of length H in the d-dimensional state space preceding time step t as
st = (st−H+1, . . . , st) ∈ Rd×H , which serves as the input to PAE Starke et al. (2022). The autoen-
coder structure decomposes the input motions into c latent channels, producing a lower-dimensional
embedding zt ∈ Rc×H of the motion input. A subsequent differentiable Fast Fourier Transform
extracts the frequency ft, amplitude at, and offset bt vectors of the latent trajectories, while the
phase vector ϕt is computed using a separate fully connected layer. This parameterization process
is denoted by p, and we have:

zt = enc(st), ϕt, ft, at, bt = p(zt) (1)

where ϕt, ft, at, bt ∈ Rc.

Next, the reconstructed latent trajectory segments ẑt ∈ Rc×H are computed using sinusoidal func-
tions parameterized by the latent vectors:

ẑt = p̂(ϕt, ft, at, bt) = at sin (2π(ftT + ϕt)) + bt, (2)

where p̂ denotes the reconstruction process, and T represents the time window corresponding to the
state transition horizon H . Finally, the network decodes the reconstructed latent trajectories ẑt back
to the original motion space, and the reconstruction error is computed with respect to the original
input:

ŝt = dec(ẑt), L0 = MSE(ŝt, st) (3)
where ŝt ∈ Rd×H , and MSE denotes the Mean Squared Error. For more details, we refer to the
original work .

2.2 FOURIER LATENT DYNAMICS

Problem Formation We define the state space S and describe a motion sequence τ = (s0, s1, . . .)
as a trajectory of consecutive states s ∈ S drawn from a reference dataset M. FLD aims to develop
a physics-based learning controller that can replicate the motions from the reference dataset and
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(a) PAE structure (b) PAE structure with FLD extension

Figure 1: PAE Starke et al. (2022) structure and FLD training pipeline. During training, latent
dynamics are enforced to predict proceeding latent states and parameterizations. The prediction loss
is computed in the original motion space with respect to the ground truth future states.

generate new motions in response to novel target inputs. This approach enhances the controller’s
generality, allowing it to handle a wide range of motions beyond those in the dataset.

To achieve this, FLD employs a two-stage training pipeline. The first stage involves training an effi-
cient representation model on the reference dataset, resulting in a continuously parameterized latent
space. This latent space enables the synthesis of novel motions by sampling latent encodings. In
the second stage, FLD develops a robust learning algorithm designed to track the diverse generated
target trajectories. Throughout both stages, FLD emphasizes the importance of recognizing periodic
or quasi-periodic patterns in the temporal progression of motions, which are characteristic of robotic
motor skills.

Latent Dynamics Learning FLD’s Li et al. (2024) analysis of the latent trajectories for periodic
and quasi-periodic motions encoded by the PAE reveals that the frequency, amplitude, and offset
vectors are nearly constant over time. This finding leads us to propose the quasi-constant parame-
terization assumption:

A latent trajectory z = (zt, zt+1, . . .) can be approximated by ẑ = (ẑt, ẑt+1, . . .) with a bounded
error δ = ||z− ẑ||, where ẑt′ = p̂(ϕt′ , f, a, b),∀t′ ∈ {t, t+ 1, . . .}.

FLD formalize the latent dynamics of FLD and its training process, as shown in Fig. 1(b). For a
motion segment st = (st−H+1, . . . , st) with latent trajectory zt parameterized by ϕt, ft, at, and bt,
we predict the subsequent segment st+1 using ŝt+1, decoded from i-step forward propagation z′t+i:

z′t+i = p̂(ϕt + if∆t, ft, at, bt), ŝ′t+i = dec(z′t+i), (4)

where ∆t denotes the time step. Assuming locally constant latent parameters, FLD compute the
prediction loss at time t + i. The local reconstruction in PAE can be viewed as zero-step forward
regression using latent dynamics. FLD extend this to multi-step forward prediction and define the
total loss for FLD with a maximum propagation horizon N and decay factor α:

LFLD
N =

N∑
i=0

αiLi, Li = MSE(ŝt+i, st+i), (5)

where MSE denotes Mean Squared Error.

Motion Learning Given reference trajectories, physics-based motion learning algorithms train a
control policy that actuates the joints of the simulated character or robot and reproduces the in-
structed motion trajectories.

At the beginning of each episode, a set of latent parameterizations θ0 ∈ R3c is sampled from a
skill sampler pθ (e.g., a buffer of offline reference motion encodings). The latent state ϕ0 ∈ Rc is
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Figure 2: System overview. During training, the latent states propagate under the latent dynamics
and are reconstructed to policy tracking targets ŝ at each step. The tracking reward rT is computed
as the distance between the target ŝ and the measured states s

uniformly sampled from a fixed range U . The step update of the latent vectors follows the dynamics
in Eq. 4:

θt = θt−1, ϕt = ϕt−1 + ft∆t. (6)

At each step, the latent state and parameterization are used to reconstruct a motion segment:

ŝt = (ŝt−H+1, . . . , ŝt) = dec(zt) = dec(p̂(ϕt, θt)), (7)

where the most recent state ŝt serves as a tracking target for the learning environment at the current
time step. The tracking reward encourages alignment with the target.

The latent state and parameterization are provided to the observation space to inform the policy
about the motion and the specific frame it should be tracking. Fig. 2 provides a schematic overview
of the training pipeline.

2.3 MOTION REFINEMENT

Due to the assumption described in Section. 2.2, FLD Li et al. (2024) motion representation approx-
imates well only in cases that the input motion sequence are periodic or quasi-periodic. While in a
survey on popular motion clip datasets, we found that a significant number of motions samples are
non-periodic or are periodic but too short to process. We address this by applying an pre-processing
onto the motion sequence data, which is described in Section. 3.1.

3 EXPERIMENTS

3.1 DATASET AND RESOURCES

The latent dynamics learning stage of FLD requires a joint space motion data of the certain humanoid
robotics for supervised learning. We finally collect for each type of humanoid robot a dataset of 10
reference motion data including running, raising arms, side-jogging, etc. The experiment proves
that dataset of these quatity is sufficient to learn a good dynamic motion

Humanoid Resources We carry out experiments on two types of humanoids, which are MIT
Humanoid Chignoli et al. (2021) and Unitree H1. We use the official released URDF description
and meshes for training and simulation.

Motion retargeting Given the lack of existing motion data of these humanoids, we use motion
retargeting techniques to obtain referenced robotics data from motion captures dataset of human
beings. In this case, we use the dataset collected by Peng et al. in their work. With the URDF de-
scrption of humanoid robot shape, we achieve this by inverse kinematics in joint space, implemented
using Pybullet IK toolkit.
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Case MSE (vel)↓ MSE (arm)↓ MSE (leg)↓
M.H. w/o FLD 0.36 0.25 0.23

M.H. w/ FLD 3.55 - -
H1 w/o FLD 0.47 0.72 0.39

H1 w/ FLD 4.31 - -

Table 1: Motion prediction evaluation. M.H. stands for MIT Humanoid robot Chignoli et al. (2021),
and H1 stands for Unitree H1. The velocity MSE has unit m/s. The arm and leg rotation has unit
rad.

Motion wrapping and smoothing While in a survey on popular motion clip datasets, we found
that a significant number of motions samples are non-periodic or are periodic but too short to process.
To address these isssues, we apply the following pre-processing onto the collected motion clips.

• For non-periodic motion clips, we wrap them by concatenating its end with its begining,
and repeat for at least 5 times.

• For periodic motion clips that are shorter than 30 frames, we repeat them for at least 3
times.

3.2 IMPLEMENTATION DETAILS

We use PPO as motion learning prior and use Isaac Gym Makoviychuk et al. (2021) for physical-
aware simulation and visualization.

3.3 RESULTS

Motion prediction and synthesis We carry out quantified experiments on humanoid motion pre-
diction to evaluate model’s ability. For each experiment, we warmup motion control model for
t = 30 timesteps, and after that, we use our model to prediction the following motion sequence and
randomly sample n = 50 predicted timesteps to compute their MSE with respect to the ground truth
data. The result is shown in Tab. 1

Motion simulation We also carry motion control experiments in the Isaac Gym Makoviychuk
et al. (2021) simulator, as shown in Fig. 3. For video demos, please check https://drive.
google.com/drive/folders/10QbhcQAh_m5SoiOqcgzmUJ35NSI69nOF?usp=
sharing

Figure 3: Motion demo. MIT Humanoid robot Chignoli et al. (2021) motion prediction results.

4 CONCLUSION

In this paper, we implement and utilize the FLD Li et al. (2024) pipeline to learn a structured mo-
tion representation, which benefits the policy model to control the motion of humanoid robots. We
ultimately manage to control full-body motion for several types of humanoids (including MIT hu-
manoid Chignoli et al. (2021) and Unitree H1) in Isaac Gym simulation environment Makoviychuk
et al. (2021). We further make some refinement on the existing FLD pipeline, resolving some limita-
tion on the training motion sequence. We also implement a motion retargeting pipeline that retargets
motion data in joint space from human motion clips released by DeepMimic Peng et al. (2018). This
pipeline helps to collect the necessary training data for FLD representation.
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