Jincheng (Jeffrey) YANG

= +86 13348278286

modem514@sjtu.edu.cn

yang-chincheng.github.io

RESEARCH INTERESTS

My research interest focuses on intergrating 3D generative methods into embodied tasks, and building a physically-reliable world model for embodied AI agents. I'm also broadly interested in machine learning, computer vision, and robotics.

EDUCATION

Shanghai Jiao Tong University

Shanghai, China

Bachelor of Computer Science

Sep. 2021 – Jun. 2025 (Expected)

- Member of ACM Honor Class, an elite CS program for highly capable students
- **GPA**: 3.92.
- Core course scores: Machine Learning (A), Data Mining (A+), Computer Vision (A+), Deep Learning (A), Large Language Model (A+), Reinforcement Learning (A+), Computer Graphics (A).

Massachusetts Institute of Technology

Cambridge, MA, USA

Visiting Student

Jul. 2024 - Dec. 2024 (Expected)

- Advised by Prof. Chuang Gan and Prof. Joshua Tenenbaum
- Research on 3D vision, language, and action modeling for embodied AI agents.

SELECTED HONORS & AWARDS

PROGRAMMING COMPETITION

- Silver Medal, The 2022 ACM-ICPC Asia Shanghai Regional Contest
- Silver Medal, The 2021 ACM-ICPC Asia Nanjing Regional Contest
- Silver Medal, The 2021 ACM-CCPC Contest Guangzhou Site

SCHOLARSHIP

- 2021-2022 Ruiyuan-Hongshan Scholarship (Top 5% in ACM Honor Class 2021)
- 2021-2022 & 2022-2023, Zhiyuan Honorary Scholarship

Publication & Manuscripts¹

Articulate Anything: Open-vocabulary 3D Articulated Object Modeling [link]

Submit to ICLR, 2025

Jincheng Yang*, Xiaowen Qiu*, Yian Wang, Zhehuan Chen, Yufei Wang, Tsun-Hsuan Wang, Zhou Xian, Chuang Gan

• We propose *Articulate Anything*, an automated framework that is able to convert any rigid 3D mesh into its articulated counterpart in an open-vocabulary manner. Given a 3D mesh, our framework utilizes advanced Vision-Language Models and visual prompting techniques to extract semantic information, allowing for both the segmentation of object parts and the construction of functional joints.

3D-VLA: A 3D Vision-Language-Action Generative World Model [link]

ICML, 2024

Haoyu Zhen, Xiaowen Qiu, Peihao Chen, Jincheng Yang, Xin Yan, Yilun Du, Yining Hong, Chuang Gan

• We propose 3D-VLA by introducing a new family of embodied foundation models that seamlessly link 3D perception, reasoning, and action through a generative world model.

VirtualCommunity: A Generative Social World for Embodied AI [link]

Submit to CVPR, 2025

Qinhong Zhou, Hongxin Zhang, Yutian Chen, Zheyuan Zhang, Xiangye Lin, **Jincheng Yang**, Lixing Fang, Jiageng Liu, Xinyu Sun, Zeyuan Wang, Sunli Chen, Chuang Gan

- We present Virtual Community, a social world simulation platform designed to support open-world embodied AI research, featuring large-scale community scenarios derived from the real world.
- Virtual Community introduces two key features to scale up social world simulation powered by generative AI: scalable 3D scene creation, and embodied agent community generation.

¹ * denotes equal contribution.

Function Anything: Functional-aware 3D Assets Generation

In progress

Chunru Lin*, Jincheng Yang*, Chuang Gan

• We propose Function Anything, a novel framework that generates functional-aware 3D assets by learning the functional semantics of 3D objects.

OTHER PROJECTS

Kinematic Motion Diffusion: Towards Semantic-adaptive Motion Synthesis via Kinematic Guidance

Course Project for STTU ACM Class 2021 Computer Vision Course (2023-2024-1-AI3604)

- This project presents KMD, a novel motion synthesis method that leverages kinematic guidance to generate semantically adaptive human motion. KMD outperforms the baselines in terms of both motion quality and diversity.
- The techinical report paper is submitted and accepted by International Conference on Multimedia Systems and Signal Processing (ICMSSP), 2024.
- Scored 100.0/100.0.

DenseMono: Adapting DenseNet Arichitecture for Efficient Monocular Depth Estimation

Course Project for STTU ACM Class 2021 Machine Learning Course (2022-2023-2-CS3308)

- This project presents DenseMono, a relatively simple and extensible network architecture based on DenseNet for estimating depth maps from single images. DenseMono achieves a considerable accuracy with significantly less trainable parameters and iteration numbers compared with the state-of-the-art methods.
- Scored 29.1/30.0.

TEACHING EXPERIENCE

Computer Programming (2023-2024-1)-CS1953-1	Sep. 2023 – Jan. 2024
Senior Teacher Assistant ²	
Principle and Practice of Computer Algorithms (2022-2023-3)-CS1952-1	Jun. 2023 – Aug. 2023
Senior Teacher Assistant ²	
Data Structure (2022-2023-2)-CS1951-1	Feb. 2023 – Jun. 2023
Senior Teacher Assistant ²	
Computer Programming (2022-2023-1)-CS1953-1	Sep. 2022 – Jan. 2023
Senior Teacher Assistant ²	

SKILLS

- **Programming**: Python, C++, Java / Kotlin, MATLAB.
- Languages: Chinese (native), English (fluent), Japanese (basic).
 - ► TOEFL: 111/120, Reading 30, Listening 30, Speaking 23, Writing 28.
- Hobbies: Birdwatching, EDM music production.

²Senior Teacher Assistant is the highest level of teaching assistant in SJTU ACM Honor Class, who is responsible for leading the teaching team and designing the course materials.